341 research outputs found

    Dynamic Prefetching of Data Tiles for Interactive Visualization

    Get PDF
    In this paper, we present ForeCache, a general-purpose tool for exploratory browsing of large datasets. ForeCache utilizes a client-server architecture, where the user interacts with a lightweight client-side interface to browse datasets, and the data to be browsed is retrieved from a DBMS running on a back-end server. We assume a detail-on-demand browsing paradigm, and optimize the back-end support for this paradigm by inserting a separate middleware layer in front of the DBMS. To improve response times, the middleware layer fetches data ahead of the user as she explores a dataset. We consider two different mechanisms for prefetching: (a) learning what to fetch from the user's recent movements, and (b) using data characteristics (e.g., histograms) to find data similar to what the user has viewed in the past. We incorporate these mechanisms into a single prediction engine that adjusts its prediction strategies over time, based on changes in the user's behavior. We evaluated our prediction engine with a user study, and found that our dynamic prefetching strategy provides: (1) significant improvements in overall latency when compared with non-prefetching systems (430% improvement); and (2) substantial improvements in both prediction accuracy (25% improvement) and latency (88% improvement) relative to existing prefetching techniques

    Staring into the abyss: An evaluation of concurrency control with one thousand cores

    Get PDF
    Computer architectures are moving towards an era dominated by many-core machines with dozens or even hundreds of cores on a single chip. This unprecedented level of on-chip parallelism introduces a new dimension to scalability that current database management systems (DBMSs) were not designed for. In particular, as the number of cores increases, the problem of concurrency control becomes extremely challenging. With hundreds of threads running in parallel, the complexity of coordinating competing accesses to data will likely diminish the gains from increased core counts. To better understand just how unprepared current DBMSs are for future CPU architectures, we performed an evaluation of concurrency control for on-line transaction processing (OLTP) workloads on many-core chips. We implemented seven concurrency control algorithms on a main-memory DBMS and using computer simulations scaled our system to 1024 cores. Our analysis shows that all algorithms fail to scale to this magnitude but for different reasons. In each case, we identify fundamental bottlenecks that are independent of the particular database implementation and argue that even state-of-the-art DBMSs suffer from these limitations. We conclude that rather than pursuing incremental solutions, many-core chips may require a completely redesigned DBMS architecture that is built from ground up and is tightly coupled with the hardware.Intel Corporation (Science and Technology Center for Big Data

    Unsupervised String Transformation Learning for Entity Consolidation

    Full text link
    Data integration has been a long-standing challenge in data management with many applications. A key step in data integration is entity consolidation. It takes a collection of clusters of duplicate records as input and produces a single "golden record" for each cluster, which contains the canonical value for each attribute. Truth discovery and data fusion methods, as well as Master Data Management (MDM) systems, can be used for entity consolidation. However, to achieve better results, the variant values (i.e., values that are logically the same with different formats) in the clusters need to be consolidated before applying these methods. For this purpose, we propose a data-driven method to standardize the variant values based on two observations: (1) the variant values usually can be transformed to the same representation (e.g., "Mary Lee" and "Lee, Mary") and (2) the same transformation often appears repeatedly across different clusters (e.g., transpose the first and last name). Our approach first uses an unsupervised method to generate groups of value pairs that can be transformed in the same way (i.e., they share a transformation). Then the groups are presented to a human for verification and the approved ones are used to standardize the data. In a real-world dataset with 17,497 records, our method achieved 75% recall and 99.5% precision in standardizing variant values by asking a human 100 yes/no questions, which completely outperformed a state of the art data wrangling tool

    Vertexica: your relational friend for graph analytics!

    Get PDF
    In this paper, we present Vertexica, a graph analytics tools on top of a relational database, which is user friendly and yet highly efficient. Instead of constraining programmers to SQL, Vertexica offers a popular vertex-centric query interface, which is more natural for analysts to express many graph queries. The programmers simply provide their vertex-compute functions and Vertexica takes care of efficiently executing them in the standard SQL engine. The advantage of using Vertexica is its ability to leverage the relational features and enable much more sophisticated graph analysis. These include expressing graph algorithms which are difficult in vertex-centric but straightforward in SQL and the ability to compose end-to-end data processing pipelines, including pre- and post- processing of graphs as well as combining multiple algorithms for deeper insights. Vertexica has a graphical user interface and we outline several demonstration scenarios including, interactive graph analysis, complex graph analysis, and continuous and time series analysis
    • …
    corecore